Preview

Endocrine Surgery

Advanced search

Intraoperative identification of parathyroid glands during endocrine surgery

https://doi.org/10.14341/serg12724

Abstract

Nowadays, diabetes and diseases of thyroid gland take place on the first two stage in the rank of all endocrine diseases. There are 3 directions to treat thyroid glands pathologies such as: using special pills which substitute natural thyroid hormones, surgery and radioiodine therapy. It has proven that surgery of thyroid gland is the most effective method among considering upper. at The same time, it is associated with the greatest risks of complications. The most common injuries are damage to the recurrent laryngeal nerve and unintentional traumatization or removal of a healthy parathyroid gland. Parathyroid gland is a critical organ during thyroid surgery. It means that all negative reaction nearby the structure can lead to development different complications: hypoparathyroidism (transient or chronic) and hypocalcemia. In this article is considered actual methods of intraoperative optical visualization of parathyroid glans. The fundamental foundations of such methods, their advantages and disadvantages are also analyzed. It is shown that fluorescent methods in the red and near infrared regions of the spectrum using exogenous dyes have essential importance for endocrine surgery, as they allow to improve identification and reduce the risk of postoperative complications.

About the Authors

A. A. Bubnov
National Research Nuclear University «MEPhI», Engineering Physics Institute of Biomedicine; Endorcinology Research Center
Russian Federation

Alexander A. Bubnov, postgraduate student, medical physicist

11 Dmitriya Ulianova str., 117292, Moscow

eLibrary SPIN-код: 9380-1293



K. Yu. Slashchuk
Endorcinology Research Center
Russian Federation

Konstantin Y. Slashchuk, MD, Cand. Sci. (Med)]

Moscow

eLibrary SPIN-код: 3079-8033



E. A. Shirshin
Lomonosov Moscow State University
Russian Federation

Evgeny A. Shirshin, Cand. Sci., senior researcher

Moscow

eLibrary SPIN-код: 9159-1676



V. Yu. Timoshenko
National Research Nuclear University «MEPhI», Engineering Physics Institute of Biomedicine; Lomonosov Moscow State University
Russian Federation

Victor Yu Timoshenko, Dr. Sci., professor

Moscow

eLibrary SPIN-код: 7536-2368



References

1. Savina AA. Trends in the incidence of diseases of the endocrine system of the adult population of the Russian Federation. Social aspects of population health [Internet]. 2021;67(4):6 (In Russ.) Available at: http://vestnik.mednet.ru/content/view/1285/30/lang,ru/ [Accessed 08.22].

2. Fadeev VV. Review of European Thyroid Association Guideline (2018) for the Manage-ment of Graves’ Hyperthyroidism. Clin Exp Thyroidol. 2020;16(1):4-20. (In Russ.) doi: https://doi.org/10.14341/ket12474

3. Kuzmichev AS, Pavelets KV, Akinchev AL, et al. Surgical treatment of patient with combination of amiodaron-induced thyrotoxic and esophagesl cancer. Endocrine Surgery. 2021;14(4):26-29. (In Russ.) doi: https://doi.org/10.14341/serg12695

4. Plazinska MT, Sawicka-Gutaj N, Czarnywojtek A, et al. Radioiodine therapy and Graves’ disease – Myths and reality. PLoS One. 2020;15(1):e0226495. doi: https://doi.org/10.1371/journal.pone.0226495

5. Chahardahmasumi E, Salehidoost R, Amini M, et al. Assessment of the Early and Late Complication after Thyroidectomy. Adv Biomed Res. 2019;8(1):8-14. doi: https://doi.org/10.4103/abr.abr_3_19

6. Türk Y, Kıvratma G, Özdemir M, et al. The use of thyroid cartilage needle electrodes in intraoperative neuromonitoring during thyroidectomy: Case–control study. Head Neck. 2021;43(11):3287-3293. doi: https://doi.org/10.1002/hed.26810

7. Unsal IO, Calapkulu M, Sencar ME, et al. Preoperative Vitamin D Levels as a Predictor of Transient Hypocalcemia and Hypoparathyroidism After Parathyroidectomy. Sci Rep. 2020;10(1):9895. doi: https://doi.org/10.1038/s41598-020-66889-8

8. Bumber B. Hypocalcemia After Completion Thyroidectomy for Papillary Thyroid Carcinoma. Acta Clin Croat. 2020;10(1):9895. doi: https://doi.org/10.20471/acc.2020.59.s1.18

9. Kuznetsov NS, Kim IV, Kuznetsov SN. Intraoperative parathyroid hormone in strategy of surgical treatment of a primary hyperparathyreosis. Endocrine Surgery. 2011;5(2):18-25. doi: https://doi.org/10.14341/2306-3513-2011-2-18-2

10. Abdreshov SN, Demchenko GA, Mamataeva AT, et al. Condition of Adrenergic Innervation Apparatus of the Thyroid Gland, Blood and Lymph Vessels, and Lymph Nodes during Correction of Hypothyrosis. Bull Exp Biol Med. 2021;171(2):281-285. doi: https://doi.org/10.1007/s10517-021-05212-5

11. Paras C, Keller M, White L, et al. Near-infrared autofluorescence for the detection of parathyroid glands. J Biomed Opt. 2011;16(6):067012. doi: https://doi.org/10.1117/1.3583571

12. Barbieri D, Indelicato P, Vinciguerra A, et al. Autofluorescence and Indocyanine Green in Thyroid Surgery: A Systematic Review and Meta-Analysis. Laryngoscope. 2021;131(7):1683-1692. doi: https://doi.org/10.1002/lary.29297

13. Tjahjono R, Nguyen K, Phung D. Methods of identification of parathyroid glands in thyroid surgery: A literature review. NZ J. Surgery. 2021;91(9);1711-1716. doi: https://doi.org/10.1111/ans.17117

14. Yannuzzi LA. Indocyanine Green Angiography: A Perspective on Use in the Clinical Setting. Am J Ophthalmol. 2011;151(5):745-751.e1. doi: https://doi.org/10.1016/j.ajo.2011.01.043

15. Reinhart MB, Huntington CR, Blair LJ, et al. Indocyanine Green. Surg Innov. 2016;23(2):166-175. doi: https://doi.org/10.1177/1553350615604053

16. Kim SW, Lee HS, Lee KD. Intraoperative real-time localization of parathyroid gland with near infrared fluorescence imaging. Gland Surg. 2017;6(5):516-524. doi: https://doi.org/10.21037/gs.2017.05.08

17. Sandell JL, Zhu TC. A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics. 2011;4(11):773-787. doi: https://doi.org/10.1002/jbio.201100062

18. Martinsen P, Charlier J-L, Willcox T, et al. Temperature dependence of near-infrared spectra of whole blood. J Biomed Opt. 2008;13(3):034016. doi: https://doi.org/10.1117/1.2943191

19. Ladurner R, Lerchenberger M, Al Arabi N, Gallwas JKS, Stepp H, Hallfeldt KKJ. Parathyroid Autofluorescence— How Does It Affect Parathyroid and Thyroid Surgery? A 5 Year Experience. Molecules. 2019;24(14):2560. doi: https://doi.org/10.3390/molecules24142560

20. Spartalis E, Ntokos G, Georgiou K, et al. Intraoperative Indocyanine Green (ICG) Angiography for the Identification of the Parathyroid Glands: Current Evidence and Future Perspectives. In Vivo (Brooklyn). 2020;34(1):23-32. doi: https://doi.org/10.21873/invivo.11741

21. Fernández-Pérez A, Marbán G. Visible Light Spectroscopic Analysis of Methylene Blue in Water; What Comes after Dimer? ACS Omega. 2020;5(46):29801-29815. doi: https://doi.org/10.1021/acsomega.0c03830

22. Murad V, Barragán CA, Rivera H. Ultrasound Evaluation of the Parathyroid Glands. Rev Colomb Radiol. 2018;29(1):4861-4866.

23. Serra C, Serra J, Ferreira Machado IL, et al. Spectroscopic Analysis of Parathyroid and Thyroid Tissues by Ground-State diffuse Reflectance and Laser Induced Luminescence: a Preliminary Report. J Fluoresc. 2021;31(5):1235-1239. doi: https://doi.org/10.1007/s10895-021-02783-4

24. Akopov AL, Papayan GV, Efimov AN, et al. Infrared Fluorescent Angiography during Experimental Trachea Transplantation. Bull Exp Biol Med. 2018;164(4):519-522. doi: https://doi.org/10.1007/s10517-018-4024-y

25. Yannuzzi LA. Indocyanine Green Angiography: A Perspective on Use in the Clinical Setting. Am J Ophthalmol. 2011;151(5):745-751.e1. doi: https://doi.org/10.1016/j.ajo.2011.01.043

26. Hong NY, Kim HR, Lee HM, Sohn DK, Kim KG. Fluorescent property of indocyanine green (ICG) rubber ring using LED and laser light sources. Biomed Opt Express. 2016;7(5):1637-1644. doi: https://doi.org/10.1364/BOE.7.001637

27. Rudin AV, McKenzie TJ, Thompson GB, et al. Evaluation of Parathyroid Glands with Indocyanine Green Fluorescence Angiography After Thyroidectomy. World J Surg. 2019;43(6):1538-1543. doi: https://doi.org/10.1007/s00268-019-04909-z

28. Zaidi N, Bucak E, Yazici P, et al. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy. J Surg Oncol. 2016;113(7):775-778. doi: https://doi.org/10.1002/jso.24237

29. Senders JT, Muskens IS, Schnoor R, et al. Agents for fluorescenceguided glioma surgery: a systematic review of preclinical and clinical results. Acta Neurochir (Wien). 2017;159(1):151-167. doi: https://doi.org/10.1007/s00701-016-3028-5

30. Prosst RL, Gahlen J, Schnuelle P, et al. Fluorescence-Guided Minimally Invasive Parathyroidectomy: A Novel Surgical Therapy for Secondary Hyperparathyroidism. Am J Kidney Dis. 2006;48(2):327-331. doi: https://doi.org/10.1053/j.ajkd.2006.05.002

31. Asher SA, Peters GE, Pehler SF, et al. Fluorescent Detection of Rat Parathyroid Glands via 5-Aminolevulinic Acid. Laryngoscope. 2008;118(6):1014-1018. doi: https://doi.org/10.1097/MLG.0b013e3181671b61

32. Prosst RL, Weiss J, Hupp L, Willeke F, Post S. Fluorescence-Guided Minimally Invasive Parathyroidectomy: Clinical Experience with a Novel Intraoperative Detection Technique for Parathyroid Glands. World J Surg. 2010;34(9):2217-2222. doi: https://doi.org/10.1007/s00268-010-0621-2

33. Demarchi MS, Karenovics W, Bédat B, Triponez F. Near-infrared fluorescent imaging techniques for the detection and preservation of parathyroid glands during endocrine surgery. Innov Surg Sci. 2021;34(9):2217-2222. doi: https://doi.org/10.1515/iss-2021-0001

34. Suzuki T, Numata T, Shibuya M. Intraoperative photodynamic detection of normal parathyroid glands using 5-aminolevulinic acid. Laryngoscope. 2011;121(7):1462-1466. doi: https://doi.org/10.1002/lary.21857

35. Patel HP, Chadwick DR, Harrison BJ, Balasubramanian SP. Systematic review of intravenous methylene blue in parathyroid surgery. Br J Surg. 2012;99(10):1345-1351. doi: https://doi.org/10.1002/bjs.8814

36. Elbassiouny S, Fadel M, Elwakil T, Elbasiouny MS. Photodynamic diagnosis of parathyroid glands with nano-stealth aminolevulinic acid liposomes. Photodiagnosis Photodyn Ther. 2018;21(10):71-78. doi: https://doi.org/10.1016/j.pdpdt.2017.11.004

37. Dudley NE. Methylene Blue for Rapid Identification of the Parathyroids. BMJ. 1971;3(5776):680-681. doi: https://doi.org/10.1136/bmj.3.5776.680

38. Hillary SL, Guillermet S, Brown NJ, Balasubramanian SP. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbeck’s Arch Surg. 2018;403(1):111-118. doi: https://doi.org/10.1007/s00423-017-1641-2

39. Tummers QRJG, Schepers A, Hamming JF, et al. Intraoperative guidance in parathyroid surgery using near-infrared fluorescence imaging and low-dose Methylene Blue. Surgery. 2015;158(5):1323-1330. doi: https://doi.org/10.1016/j.surg.2015.03.027

40. Selvam S, Sarkar I. Bile salt induced solubilization of methylene blue: Study on methylene blue fluorescence properties and molecular mechanics calculation. J Pharm Anal. 2017;7(1):71-75. doi: https://doi.org/10.1016/j.jpha.2016.07.006

41. Bewick J, Pfleiderer A. The value and role of low dose methylene blue in the surgical management of hyperparathyroidism. Ann R Coll Surg Engl. 2014;96(7):526-529. doi: https://doi.org/10.1308/003588414X13946184903883

42. Shirshin EA, Iakimov BP, Darvin ME. Mnogofotonnaia mikroskopiia s endogennym kontrastom: priroda fluoroforov i vozmozhnosti v issledovanii biokhimicheskikh protsessov. Uspekhi biologicheskoi khimii. 2019;59:139-180. (In Russ.)

43. Lerchenberger M, Al Arabi N, Gallwas JKS, et al. Intraoperative Near-Infrared Autofluorescence and Indocyanine Green Imaging to Identify Parathyroid Glands: A Comparison. Int J Endocrinol. 2019;2019(6):1-7. doi: https://doi.org/10.1155/2019/4687951


Supplementary files

1. Figure 1. The number of cases of intraoperative PTG fluorescence imaging in thyroidectomy (according to Scopus, search for: Intraoperative AND Imaging OR Identification AND Parathyroid AND Thyroidectomy).
Subject
Type Исследовательские инструменты
View (128KB)    
Indexing metadata ▾
2. Figure 2. a — photograph of the thyroid gland during surgery: 1 — normal tissue; 2 — node; 3 — node capsule; b — typical light reflection spectra for thin sections of thyroid tissue with nodules.
Subject
Type Исследовательские инструменты
View (271KB)    
Indexing metadata ▾
3. Figure 3 Examples of images of PTG with ICG injection. a — visualization in white light; b — fluorescent imaging in the infrared range.
Subject
Type Исследовательские инструменты
View (204KB)    
Indexing metadata ▾

Review

For citations:


Bubnov A.A., Slashchuk K.Yu., Shirshin E.A., Timoshenko V.Yu. Intraoperative identification of parathyroid glands during endocrine surgery. Endocrine Surgery. 2021;15(3):41-47. (In Russ.) https://doi.org/10.14341/serg12724

Views: 563


ISSN 2306-3513 (Print)
ISSN 2310-3965 (Online)