Assessment of malignant potential of thyroid mass using computed tomography
https://doi.org/10.14341/serg12935
Abstract
BACKGROUND: Thyroid nodules are detected in 20-68% of patients. However, there is no data in the literature on the criteria for malignancy in CT studies. The introduction of CT into widespread practice has led to an increase in the detection of formations, including the thyroid gland, requiring additional examination. The use of additional imaging methods will improve the detection of malignant tumors of the thyroid gland.
AIM: The purpose of this study was to address the gap in thyroid CT imaging and to evaluate whether contrast-enhanced multiphase multidetector CT is suitable for assessing the malignant potential of thyroid mass.
MATERIALS AND METHODS: The study was conducted on the basis of the General Oncology Department No. 71 in Botkin Hospital from 2022 to 2023 A retrospective analysis of CT images included data from 146 electronic medical records of patients with differentiated carcinoma and follicular adenoma of the thyroid gland. A comparative evaluation was performed using contrast-enhanced CT (160 slices; Toshiba Aquilion Prime model) (Omnipaque 350 mg iodine/ml: 100 ml) with assessment in the native, arterial and venous phases.
RESULTS: The study included 64 patients diagnosed with follicular adenoma of the thyroid gland and 82 patients with differentiated thyroid cancer. When assessing the relationship between thyroid carcinoma and tumor density in Hounsfield units, a positive correlation was revealed (Spearman correlation in the native phase r=0.48; arterial phase r=0.69; venous phase r=0.64; p<0.001). The sensitivity and specificity of assessing the density of thyroid nodules using CT data was analyzed. The most demonstrative results were demonstrated when analyzing CT scans in the arterial phase. At an arterial phase cut-off point of 121 Hounsfield units, the sensitivity was 75.6% and the specificity was 91.7%. Using a cutoff point of 113 Hounsfield units in the venous phase, the sensitivity was 62.2% and the specificity was 95.8%. In the native phase, a cut-off point of 49 Hounsfield units demonstrated a sensitivity of 68.9% and a specificity of 75%.
CONCLUSION: Contrast-enhanced CT examination of the thyroid gland can become a promising method for the differential diagnosis of carcinomas and can be used in the presence of masses with unclear malignant potential.
About the Authors
D. D. DolidzeRussian Federation
David D. Dolidze - MD, PhD, Professor.
Moscow
Competing Interests:
None
S. D. Covantsev
Russian Federation
Serghei D. Covantsev – MD.
2nd Botkinskiy driveway 5, 117036 Moscow
Competing Interests:
None
Z. A. Bagatelia
Russian Federation
Zurab A. Bagatelia - MD, PhD.
Moscow
Competing Interests:
None
I. N. Lebedinskyi
Russian Federation
Ivan N. Lebedinkyi - MD, PhD.
Moscow
Competing Interests:
None
E. G. Kirilenko
Russian Federation
Elena G. Kirilenko - MD.
Moscow
Competing Interests:
None
A. V. Bumbu
Russian Federation
Anna V. Bumbu - MD.
Moscow
Competing Interests:
None
References
1. Kitahara CM, Schneider AB. Epidemiology of Thyroid Cancer. Cancer Epidemiol Biomarkers Prev. 2022;31(7):1284-1297. doi: https://doi.org/10.1158/1055-9965.EPI-21-1440
2. Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. The Lancet Diabetes & Endocrinology. 2022;10(4):264-72. doi: https://doi.org/10.1016/S2213-8587(22)00035-3
3. Olson E, Wintheiser G, Wolfe KM, Droessler J, Silberstein PT. Epidemiology of Thyroid Cancer: A Review of the National Cancer Database, 2000-2013. Cureus. 2019;11(2):e4127. doi: https://doi.org/10.7759/cureus.4127
4. Dolidze DD, Bagatelia ZA, Lukin AYu, Сovantsev SD, Shevyakova TV, et al. The possibilities of ultrasound imaging in the diagnosis of follicular neoplasia of the thyroid gland. Head and Neck Tumors (HNT). 2023;13(1):81-90. (In Russ.). doi: https://doi.org/10.17650/2222-1468-2023-13-1-81-90
5. Fisher SB, Perrier ND. The incidental thyroid nodule. CA Cancer J Clin. 2018;68(2):97-105. doi: https://doi.org/10.3322/caac.21447
6. Wilhelm S. Evaluation of Thyroid Incidentaloma. Surg Clin North Am. 2014. doi: https://doi.org/10.1016/j.suc.2014.02.004
7. Orija IB, Piñeyro M, Biscotti C, Reddy SS, Hamrahian AH. Value of repeating a nondiagnostic thyroid fine-needle aspiration biopsy. Endocrine practice: official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists. 2007;13(7):735-42. doi: https://doi.org/10.4158/EP.13.7.735
8. Alexander EK, Heering JP, Benson CB, Frates MC, Doubilet PM, Cibas ES, et al. Assessment of nondiagnostic ultrasound-guided fine needle aspirations of thyroid nodules. The Journal of clinical endocrinology and metabolism. 2002;87(11):4924-7. doi: https://doi.org/10.1210/jc.2002-020865
9. Theoharis CG, Schofield KM, Hammers L, Udelsman R, Chhieng DC. The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid: official journal of the American Thyroid Association. 2009;19(11):1215-23. doi: https://doi.org/10.1089/thy.2009.0155
10. Dolidze DD, Shabunin AV, Mumladze RB, Vardanyan AV, Covantsev SD, Shulutko AM, et al. A Narrative Review of Preventive Central Lymph Node Dissection in Patients With Papillary Thyroid Cancer - A Necessity or an Excess. Frontiers in oncology. 2022;12:906695. doi: https://doi.org/10.3389/fonc.2022.906695
11. Debnam JM, Guha-Thakurta N, Sun J, Wei W, Zafereo ME, Cabanillas ME, et al. Distinguishing Recurrent Thyroid Cancer from Residual Nonmalignant Thyroid Tissue Using Multiphasic Multidetector CT. AJNR American journal of neuroradiology. 2020;41(5):844-51. doi: https://doi.org/10.3174/ajnr.A6519
12. Han YM, Kim YC, Park EK, Choe JG. Diagnostic value of CT density in patients with diffusely increased FDG uptake in the thyroid gland on PET/CT images. AJR American journal of roentgenology. 2010;195(1):223-8. doi: https://doi.org/10.2214/AJR.09.3319
13. Kachko VA, Semkina GV, Platonova NM, Vanushko VE, Abrosimov AYu. Diagnosis of thyroid neoplasms: state of the art on 2018. Endocrine Surgery. 2018;12(3):109-127. (In Russ.). doi: https://doi.org/10.14341/serg9977
14. Tarbaeva NV, Buryakina SA, Volevodz NN, Kovalevich LD, Kornelyuk AYu, Mokrysheva NG / Pod red. II Dedova. Mul’tispiral’naya komp’yuternaya tomografiya v endokrinologii. — M.: Izdatel’skij dom Vidar-M, 2020. — 176 s. (In Russ.).
15. Durmaz F, Özgökçe M. Effectiveness of Hounsfield Unit Values in the Differentiation of Malign and Benign Thyroid Nodules. Eastern J Med. 2021;26(2):326-33. doi: https://doi.org/10.5505/ejm.2021.36450
16. Fitzgerald RT, Kuruva M, David R, Samant RS, Kumar M, Van Hemert R, et al. Characterization of Thyroid Nodules by 4-Dimensional Computed Tomography: Initial Experience. Journal of computer assisted tomography. 2017;41(2):195-8. doi: https://doi.org/10.1097/RCT.0000000000000495
17. Hunter GJ, Schellingerhout D, Vu TH, Perrier ND, Hamberg LM. Accuracy of four-dimensional CT for the localization of abnormal parathyroid glands in patients with primary hyperparathyroidism. Radiology. 2012;264(3):789-95 doi: https://doi.org/10.1148/radiol.12110852
18. Shin HS, Na DG, Paik W, Yoon SJ, Gwon HY, Noh B-J, et al. Malignancy Risk Stratification of Thyroid Nodules with Macrocalcification and Rim Calcification Based on Ultrasound Patterns. Korean J Radiol. 2021;22(4):663-71. doi: https://doi.org/10.3348/kjr.2020.0381
19. Bilici S et al. Histopathological investigation of intranodular echogenic foci detected by thyroid ultrasonography. Am J Otolaryngol. 2017;38:608-13. doi: https://doi.org/10.1016/j.amjoto.2017.07.002
20. Ye M, Wu S, Zhou Q, Wang F, Chen X, Gong X, et al. Association between macrocalcification and papillary thyroid carcinoma and corresponding valuable diagnostic tool: retrospective study. World Journal of Surgical Oncology. 2023;21(1):149. doi: https://doi.org/10.1186/s12957-023-03016-7
21. Malhi HS, Velez E, Kazmierski B, Gulati M, Deurdulian C, Cen SY, et al. Peripheral Thyroid Nodule Calcifications on Sonography: Evaluation of Malignant Potential. American Journal of Roentgenology. 2019;213(3):672-5. doi: https://doi.org/10.2214/AJR.18.20799
22. Yoon DY, Lee JW, Chang SK, Choi CS, Yun EJ, Seo YL, et al. Peripheral Calcification in Thyroid Nodules. Journal of Ultrasound in Medicine. 2007;26(10):1349-55. doi: https://doi.org/10.7863/jum.2007.26.10.1349
Supplementary files
|
1. Рисунок 1. КТ-картина карциномы щитовидной железы (аксиальный срез, образование указано стрелкой). А — артериальная фаза, В — венозная фаза. | |
Subject | ||
Type | Other | |
View
(744KB)
|
Indexing metadata ▾ |
|
2. Рисунок 2. Фолликулярная аденома щитовидной железы (аксиальный срез, образование указано стрелкой). А — натив, В — артериальная фаза. | |
Subject | ||
Type | Other | |
View
(885KB)
|
Indexing metadata ▾ |
|
3. Рисунок 3. Разница в плотности образования в единицах Хаунсфилда в зависимости от фазы контрастирования. | |
Subject | ||
Type | Other | |
View
(421KB)
|
Indexing metadata ▾ |
|
4. Рисунок 4. ROC-кривая чувствительности и специфичности. | |
Subject | ||
Type | Other | |
View
(324KB)
|
Indexing metadata ▾ |
|
5. Рисунок 5. КТ-картина множественных образований обеих долей щитовидной железы (аксиальный срез, образование указано стрелкой). | |
Subject | ||
Type | Other | |
View
(485KB)
|
Indexing metadata ▾ |
|
6. Рисунок 6. КТ-картина кальцинатов щитовидной железы (кальцинаты указаны стрелкой). А — микрокальцинат, В — макрокальцинат, С — периферическая кальцификация образований. | |
Subject | ||
Type | Other | |
View
(1MB)
|
Indexing metadata ▾ |
Review
For citations:
Dolidze D.D., Covantsev S.D., Bagatelia Z.A., Lebedinskyi I.N., Kirilenko E.G., Bumbu A.V. Assessment of malignant potential of thyroid mass using computed tomography. Endocrine Surgery. 2025;19(1):23-31. (In Russ.) https://doi.org/10.14341/serg12935

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).