Preview

Endocrine Surgery

Advanced search

The role of immunohistochemical analysis in improving the diagnosis accuracy of neuroendocrine tumors of the pituitary gland

https://doi.org/10.14341/serg13007

Abstract

BACKGROUND: The current clinical classification and treatment principles for pituitary adenomas are primarily based on the analysis of hormone levels in blood plasma. However, this approach does not account for the heterogeneity and plurihormonal nature of these tumors, which pose significant diagnostic challenges. Immunohistochemical (IHC) analysis is a crucial tool for studying the molecular characteristics of resected tumors, enabling the identification of features that may not be apparent through standard biochemical tests and clinical evaluation.

AIM: To investigate the heterogeneity and hormone co-expression of pituitary adenomas through a comparative analysis of clinical, hormonal, and immunohistochemical data, aiming to optimize the diagnosis and classification of pituitary neuroendocrine tumors.

MATERIALS AND METHODS: The study included 10 pituitary adenoma samples. A comprehensive immunohistochemical analysis was performed to evaluate the expression of transcription factors and pituitary hormones to detect tumor heterogeneity and potential plurihormonal pituitary adenomas.

RESULTS: The analysis confirmed significant heterogeneity of pituitary adenomas and identified cases of hormone co-­expression in certain tumors, which may be overlooked when relying solely on clinical data and blood test results, or in the absence of IHC testing that covers all hormones and transcription factors in pituitary tissue. In our study, we identified heterogeneity in pituitary adenoma samples at the level of transcription factor and hormone expression. For example, in two hormonally active corticotropinomas, we observed not only the expression of standard IHC markers but also the unexpected expression of GH and PIT1. Notably, somatotropinomas exhibited distinct expression of SF1, a transcription factor typically specific to gonadotroph cells. Additionally, we identified signs of heterogeneity in hormone-inactive pituitary tumors — such as silent gonadotropinomas — where co-expression of both SF1 and TPIT was detected.

CONCLUSION: The results of the study confirmed significant heterogeneity of pituitary adenomas and the presence of hormone co-expression, indicating the complexity of their diagnosis when relying solely on clinical and hormonal methods. Comprehensive immunohistochemical analysis plays a key role in the accurate classification of these tumors, which may contribute to the improvement of diagnostic and therapeutic approaches.

About the Authors

W. Asaad
Endocrinology Research Centre
Russian Federation

Walaa Asaad.

Moscow


Competing Interests:

None



N. V. Pachuashvili
Endocrinology Research Centre
Russian Federation

Nano Pachuashvili.

Moscow


Competing Interests:

None



L. S. Urusova
Endocrinology Research Centre
Russian Federation

Liliya Urusova - ScD.

Moscow


Competing Interests:

None



E. V. Bondarenko
Endocrinology Research Centre
Russian Federation

Ekaterina Bondarenko - PhD.

Moscow


Competing Interests:

None



A. M. Lapshina
Endocrinology Research Centre
Russian Federation

Anastasia Lapshina - PhD.

Moscow


Competing Interests:

None



M. V. Utkina
Endocrinology Research Centre
Russian Federation

Marina Utkina - PhD.

Moscow


Competing Interests:

None



S. V. Popov
Endocrinology Research Centre
Russian Federation

Sergey Popov - PhD.

Moscow


Competing Interests:

None



L. K. Dzeranova
Endocrinology Research Centre
Russian Federation

Larisa K. Dzeranova - MD, ScD.

Moscow


Competing Interests:

None



E. A. Pigarova
Endocrinology Research Centre
Russian Federation

Ekaterina A. Pigarova - MD, ScD.

11 Dm. Ulyanova street, 117036 Moscow

Scopus Author ID 55655098500


Competing Interests:

None



References

1. Stefàno E, De Castro F. An Overview of Altered Pathways Associated with Sensitivity to Platinum-Based Chemotherapy in Neuroendocrine Tumors: Strengths and Prospects. 2024;25(16)

2. White BE, Rous B, Chandrakumaran K, Wong K, Bouvier C, Van Hemelrijck M, et al. Incidence and survival of neuroendocrine neoplasia in England 1995-2018: A retrospective, population-based study. The Lancet regional health Europe. 2022;23:100510 doi: https://doi.org/10.1016/j.lanepe.2022.100510

3. Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia. 2017;19(12):991-1002 doi: https://doi.org/10.1016/j.neo.2017.09.002

4. Asa SL, Mete O. Overview of the 2022 WHO Classification of Pituitary Tumors. Endocr Pathol. 2022;33(1):6-26. doi: https://doi.org/10.1007/s12022-022-09703-7

5. Dottermusch M, Ryba A, Ricklefs FL, Flitsch J, Schmid S, Glatzel M, et al. Pituitary neuroendocrine tumors with PIT1/SF1 co-expression show distinct clinicopathological and molecular features. Acta Neuropathologica. 2024;147(1):16 doi: https://doi.org/10.1007/s00401-024-02686-1

6. Xu J, Zhang S, Su W, Yang J, Yang L, Li X. Association between transcription factors expression and growth patterns of nonfunctioning pituitary adenomas. Scientific Reports. 2025;15(1):601

7. Cheok SK, Ruzevick J, Briggs RG, Cote DJ, Shah I, Gomez D, et al. A contemporary, multiinstitutional analysis of transcription factor lineage in pituitary adenomas: comparative study of neuroimaging, histopathology, and clinical outcomes. Journal of neurosurgery. 2025:1-9

8. Harris J, Gouhier A, Drouin J. Mechanisms in endocrinology: Pioneer transcription factors in pituitary development and tumorigenesis. European journal of endocrinology. 2021;184(1):R1-R15. doi: https://doi.org/10.1530/EJE-20-0866

9. Asaad W, Utkina M, Shcherbakova A, Popov S, Melnichenko G, Mokrysheva N. scRNA sequencing technology for PitNET studies. Frontiers in Endocrinology. 2024; 15

10. Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, et al. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nature Communications. 2020;11(1):5275. doi: https://doi.org/10.1038/s41467-020-19012-4

11. Zhang Q, Yao B, Long X, Chen Z, He M, Wu Y, et al. Single-cell sequencing identifies differentiation-related markers for molecular classification and recurrence prediction of PitNET. Cell reports Medicine. 2023;4(2):100934. doi: https://doi.org/10.1016/j.xcrm.2023.100934

12. Asa SL, Puy LA, Lew AM, Sundmark VC, Elsholtz HP. Cell type-specific expression of the pituitary transcription activator pit-1 in the human pituitary and pituitary adenomas. The Journal of clinical endocrinology and metabolism. 1993;77(5):1275-80. doi: https://doi.org/10.1210/jcem.77.5.8077321

13. Tebani A, Jotanovic J, Hekmati N, Sivertsson Å, Gudjonsson O, Edén Engström B, et al. Annotation of pituitary neuroendocrine tumors with genome-wide expression analysis. 2021;9(1):181.

14. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. The Journal of clinical endocrinology and metabolism. Acta Neuropathol Commun. 1996;81(6):2165-70. doi: https://doi.org/10.1186/s40478-021-01284-6

15. Zhao L, Bakke M, Krimkevich Y, Cushman LJ, Parlow AF, Camper SA, et al. Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development (Cambridge, England). 2001;128(2):147-154. doi: https://doi.org/10.1242/dev.128.2.147

16. Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell. 2001;104(6):849-59. doi: https://doi.org/10.1016/S0092-8674(01)00282-3

17. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes & development. 2003;17(6):738-47. doi: https://doi.org/10.1101/gad.1065703

18. Bertagna X, Guignat L, Groussin L, Bertherat J. Cushing’s disease. Best Practice & Research Clinical Endocrinology & Metabolism. 2009;23(5):607-23

19. Sathyakumar R, Chacko G. Newer Concepts in the Classification of Pituitary Adenomas. Neurology India. 2020;68(Suppl 1). doi: https://doi.org/10.4103/0028-3886.287667

20. Mete O, Lopes MB. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocrine pathology. 2017;28(3):228-43. doi: https://doi.org/10.1007/s12022-017-9498-z

21. Dai C, Kang J, Liu X, Yao Y, Wang H, Wang R. How to Classify and Define Pituitary Tumors: Recent Advances and Current Controversies. Front Endocrinol (Lausanne). 2021;12:604644. doi: https://doi.org/10.3389/fendo.2021.604644

22. Shi R, Wan X, Yan Z, Tan Z, Liu X, Lei T. Clinicopathological characteristics of Plurihormonal pituitary adenoma. Frontiers in Surgery. 2022;9:826720. doi: https://doi.org/10.3389/fsurg.2022.826720

23. Shou-se W. Immunopathological Study of Plurihormonal Pituitary Adenomas. Clinical neurosurgery. 2008

24. Asuzu DT, Alvarez R, Fletcher PA, Mandal D, Johnson K, Wu W, et al. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing’s disease. Cell reports. 2022;40(8):111223. doi: https://doi.org/10.1016/j.celrep.2022.111223

25. Zhan X, Long Y. Exploration of molecular network variations in different subtypes of human non-functional pituitary adenomas. Frontiers in Endocrinology. 2016;7:13. doi: https://doi.org/10.3389/fendo.2016.00013

26. Zhan X, Desiderio DM. Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Analytical biochemistry. 2006;354(2):279-89. doi: https://doi.org/10.1016/j.ab.2006.05.024

27. Beranova-Giorgianni S, Zhao Y, Desiderio DM, Giorgianni F. Phosphoproteomic analysis of the human pituitary. Pituitary. 2006;9:109-20. doi: https://doi.org/10.1007/s11102-006-8916-x

28. Moreno CS, Evans C-O, Zhan X, Okor M, Desiderio DM, Oyesiku NM. Novel molecular signaling and classification of human clinically nonfunctional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer research. 2005;65(22):10214-22. doi: https://doi.org/10.1158/0008-5472.CAN-05-0884

29. Mete O, Lopes MB. Overview of the 2017 WHO Classification of Pituitary Tumors. Endocrine pathology. 2017;28(3):228-43. doi: https://doi.org/10.1007/s12022-017-9498-z

30. Amir J, Guiot MC, Garfield N. Plurihormonal pituitary adenoma cosecreting ACTH and GH: a rare cause of Cushing’s disease. BMJ case reports. 2022;15(11). doi: https://doi.org/10.1136/bcr-2022-251451

31. Cooper O, Ben-Shlomo A, Bonert V, Bannykh S, Mirocha J, Melmed S. Silent corticogonadotroph adenomas: clinical and cellular characteristics and long-term outcomes. Hormones & cancer. 2010;1(2):80-92. doi: https://doi.org/10.1007/s12672-010-0014-x


Supplementary files

1. Рисунок 1. Траектория развития передней доли гипофиза на основании интегрированных данных из литературных источников [10, 11].
Subject
Type Other
View (669KB)    
Indexing metadata ▾
2. Рисунок 2. Анализ ИГХ для образца СА.
Subject
Type Other
View (1MB)    
Indexing metadata ▾
3. Рисунок 3. Анализ ИГХ для образца гормонально неактивной соматотропиномы.
Subject
Type Other
View (1MB)    
Indexing metadata ▾
4. Рисунок 4. Анализ ИГХ для образца кортикотропиномы (P4).
Subject
Type Other
View (773KB)    
Indexing metadata ▾
5. Рисунок 5. Анализ ИГХ для образца соматотропиномы (P3).
Subject
Type Other
View (814KB)    
Indexing metadata ▾
6. Рисунок 6. Анализ ИГХ в образце гормонально неактивная гонадотропиномы.
Subject
Type Other
View (717KB)    
Indexing metadata ▾

Review

For citations:


Asaad W., Pachuashvili N.V., Urusova L.S., Bondarenko E.V., Lapshina A.M., Utkina M.V., Popov S.V., Dzeranova L.K., Pigarova E.A. The role of immunohistochemical analysis in improving the diagnosis accuracy of neuroendocrine tumors of the pituitary gland. Endocrine Surgery. 2025;19(1):13-22. (In Russ.) https://doi.org/10.14341/serg13007

Views: 725


ISSN 2306-3513 (Print)
ISSN 2310-3965 (Online)