Biobanking in oncology and radiology
https://doi.org/10.14341/serg9555
Abstract
The first biobank in Russia was created in 1998 to investigate post-Chernobyl thyroid tumors. The number of biobanks in the world is growing. Infrastructure and collaboration are improving. Ethical, legal and methodological guidelines for biobanking have been developed and are regularly reviewed. Biobanking objects are now not only biological samples of patients but also their dynamic biomedical characteristics. Comparison of genetics, proteome and tumour metabolism and in vivo radiological visualization is necessary to improve personalized diagnostics, treatment and its effectiveness. The article focuses on international evidence-based experience of sample preparation and cryopreservation of biological samples, information logistics, and integration solutions in biobanking. Guiding principles and the model of a modern biobank, integrating up-to-date technologies of digital personalized medicine and telemedicine in oncology and radiology are reported. The article may be of interest to a wide range of experts in biomedicine, especially oncologists, radiologists, pathologists, geneticists, and IT specialists.
About the Authors
Pavel O. RoumiantsevEndocrinology Research Centre
Russian Federation
MD, PhD, Deputy director
Ali M. Mudunov
Blokhin Russian Cancer Research Centre
Russian Federation
MD, PhD
References
1. Campbell LD, Astrin JJ, DeSouza Y, et al. The 2018 Revision of the ISBER Best Practices: Summary of Changes and the Editorial Team's Development Process. Biopreserv Biobank. 2018. doi: 10.1089/bio.2018.0001.
2. Watson RW, Kay EW, Smith D. Integrating biobanks: addressing the practical and ethical issues to deliver a valuable tool for cancer research. Nat Rev Cancer. 2010;10(9):646-651. doi: 10.1038/nrc2913.
3. Botti G, Franco R, Cantile M, et al. Tumor biobanks in translational medicine. J Transl Med. 2012;10:204. doi: 10.1186/1479-5876-10-204.
4. Kozlakidis Z. The ISBER Strategic Plan: Growing Stronger Through International Cooperation. Biopreserv Biobank. 2017;15(6):551-552. doi: 10.1089/bio.2017.29029.zjk.
5. Hainaut P, Vaught J, Zatloukal K, Pasterk M. Banking of Human Biospecimens. Switzerland: Springer; 2017. 239 p.
6. Neri E, Regge D. Imaging biobanks in oncology: European perspective. Future Oncol. 2017;13(5):433-441. doi: 10.2217/fon-2016-0239.
7. Whittingham DG, Wood M, Farrant J, et al. Survival of frozen mouse embryos after rapid thawing from -196 degrees C. J Reprod Fertil. 1979;56(1):11-21. https://www.ncbi.nlm.nih.gov/pubmed/469830.
8. Rall WF, Polge C. Effect of warming rate on mouse embryos frozen and thawed in glycerol. J Reprod Fertil. 1984;70(1): 285-292. https://www.ncbi.nlm.nih.gov/pubmed/6363690.
9. Ayache S, Panelli M, Marincola FM, Stroncek DF. Effects of storage time and exogenous protease inhibitors on plasma protein levels. Am J Clin Pathol. 2006;126(2):174-184. doi: 10.1309/3WM7-XJ7R-D8BC-LNKX.
10. Banks RE, Stanley AJ, Cairns DA, et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem. 2005;51(9):1637-1649. doi: 10.1373/clinchem.2005.051417.
11. West-Nielsen M, Hogdall EV, Marchiori E, et al. Sample handling for mass spectrometric proteomic investigations of human sera. Anal Chem. 2005;77(16):5114-5123. doi: 10.1021/ac050253g.
12. Meric-Bernstam F, Akcakanat A, Chen H, et al. Influence of biospecimen variables on proteomic biomarkers in breast cancer. Clin Cancer Res. 2014;20(14):3870-3883. doi: 10.1158/1078-0432.CCR-13-1507.
13. Vaught JB. Blood collection, shipment, processing, and storage. Cancer Epidemiol Biomarkers Prev. 2006;15(9): 1582-1584. doi: 10.1158/1055-9965.EPI-06-0630.
14. Drake SK, Bowen RA, Remaley AT, Hortin GL. Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides. Clin Chem. 2004;50(12): 2398-2401. doi: 10.1373/clinchem.2004.040303.
15. Yucel A, Karakus R, Cemalettin A. Effect of blood collection tube types on the measurement of human epidermal growth factor. J Immunoassay Immunochem. 2007;28(1):47-60. doi: 10.1080/15321810601026091.
16. Preissner CM, Reilly WM, Cyr RC, et al. Plastic versus glass tubes: effects on analytical performance of selected serum and plasma hormone assays. Clin Chem. 2004;50(7): 1245-1247. doi: 10.1373/clinchem.2004.034108.
17. Lehmann S, Guadagni F, Moore H, et al. Standard preanalytical coding for biospecimens: review and implementation of the Sample PREanalytical Code (SPREC). Biopreserv Biobank. 2012;10(4):366-374. doi: 10.1089/bio.2012.0012.
Supplementary files
![]() |
1. Рис 1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(562KB)
|
Indexing metadata ▾ |
![]() |
2. Рис 2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(121KB)
|
Indexing metadata ▾ |
|
3. Table 1. Requirements for the information system of a cancer biobank | |
Subject | ||
Type | Исследовательские инструменты | |
View
(228KB)
|
Indexing metadata ▾ |
|
4. Table 2. Radiological Biomarkers | |
Subject | ||
Type | Исследовательские инструменты | |
View
(178KB)
|
Indexing metadata ▾ |
|
5. Fig. 1. Principles of cryopreservation of biological samples. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(240KB)
|
Indexing metadata ▾ |
|
6. Fig. 2. Biobanking in oncology in the era of digital personalized medicine. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(129KB)
|
Indexing metadata ▾ |
Review
For citations:
Roumiantsev P.O., Mudunov A.M. Biobanking in oncology and radiology. Endocrine Surgery. 2017;11(4):170-177. (In Russ.) https://doi.org/10.14341/serg9555

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).