Preview

Endocrine Surgery

Advanced search

Somatic mutation testing: the role in differential diagnosis of thyroid neoplasms

https://doi.org/10.14341/serg10181

Abstract

Background: In the preoperative diagnosis of thyroid tumors the cytological examination of the material of fine needle aspiration biopsy is the gold standard and serves as the basis for planning of treatment strategy. However, in 10–30% of cases, it cannot be clearly established by cytology whether the nature of thyroid neoplasm benign or malignant, which leads to the inability to choose the optimal treatment strategy in advance. For such cases, it is extremely important to search for methods of clarifying differential diagnosis, among which mutation testing is currently considered the most promising.


Aims: To evaluate the possibility of using mutation tests for clarifying differential diagnosis of thyroid neoplasms at the preoperative stage.


Materials and methods: We performed the prospective single center study, which included patients with the thyroid neoplasms, who had been treated in the Endocrinology Research Center, Moscow, Russia from 2012 to 2014. Samples of histological material, cytological material and blood plasma of these patients were tested for the presence of somatic mutations in hot spots of the genes BRAF, KRAS, NRAS, TERT, and EIF1AX.


Results: The study included 75 patients, 29 of them with low-risk papillary thyroid cancer, 29 with follicular neoplasm NA of the thyroid gland and 17 with colloid nodular goiter. Mutations in the “hot spots” of the BRAF gene (exon 15, codon area 600–601) were found in 29 patients, mutations in the “hot spots” of the NRAS gene (exon 3, codon 61) – in 8 patients; mutations in the hot spots of the KRAS, TERT and EIF1AX genes were not detected. Correlation of the results of mutational testing of cytological and histological material was 91.7%. Mutations of tumor origin in circulating blood plasma DNA were found in only 1 cases. The prognostic value of the positive result (PPV) of the mutation test on cytological material in relation to the malignant nature of the thyroid tumor was 100% for the BRAF gene and 0% for the NRAS gene.


Conclusions: The mutation test in the “hot spots” of the BRAF gene on cytological material can be used as an additional marker to clarify the nature of thyroid tumors, when the result of cytological examination are uncertain. Either in similar situations for mutation tests in the “hot spots” of genes KRAS, NRAS, EIF1AX and TERT on cytological material, or mutation testing of circulating DNA of blood plasma can’t be used as an additional marker.

About the Authors

Vera A. Kachko

I.M. Sechenov First Moscow State Medical University (Sechenov University)


Russian Federation

MD Department of Endocrinology



Andrew R. Zaretsky

Evrogen Lab LLC; Shemyakin-Ovchinnikov Research Institute for Bioorganic Chemistry, Russian Academy of Sciences


Russian Federation

MD



Vladimir E. Vanushko

Endocrinology Research Centre


Russian Federation

MD, PhD



Nadezhda M. Platonova

I.M. Sechenov First Moscow State Medical University (Sechenov University); Endocrinology Research Centre


Russian Federation

MD, PhD



Aleksandr Yu. Abrosimov

Endocrinology Research Centre


Russian Federation

MD, PhD



Galina V. Semkina

Endocrinology Research Centre


Russian Federation

MD



References

1. Cibas ES, Ali SZ. The 2017 Bethesda System for Reporting Thyroid Cytopathology. J Am Soc Cytopathol. 2017;6(6): 217-222. doi: https://doi.org/10.1016/j.jasc.2017.09.002.

2. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26(1):1-133. doi: https://doi.org/10.1089/thy.2015.0020.

3. Hsiao SJ, Nikiforov YE. Molecular approaches to thyroid cancer diagnosis. Endocr Relat Cancer. 2014;21(5):T301-313. doi: https://doi.org/10.1530/ERC-14-0166.

4. Wei X, Li Y, Zhang S, Gao M. Meta-analysis of thyroid imaging reporting and data system in the ultrasonographic diagnosis of 10,437 thyroid nodules. Head Neck. 2016;38(2):309-315. doi: https://doi.org/10.1002/hed.23878.

5. Бельцевич Д.Г., Ванушко В.Э., Румянцев П.О. и др. Российские клинические рекомендации по диагностике и лечению высокодифференцированного рака щитовидной железы у взрослых, 2017 год. // Эндокринная хирургия. – 2017. – Т. 11. – №1. – С. 6-27. [BeltsevichDG, Vanushko VE, Rumyantsev PO, et al. Russian clinical practice guidelines for differentiated thyroid cancer diagnosis and treatment. Endocrine surgery. 2017;11(1):6-27. (In Russ.)] doi: https://doi.org/10.14341/serg201716-27.

6. Agrawal N, Jiao Y, Sausen M, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98(2):E364-369. doi: https://doi.org/10.1210/jc.2012-2703.

7. Rossi M, Buratto M, Tagliati F, et al. Relevance of BRAF(V600E) mutation testing versus RAS point mutations and RET/PTC rearrangements evaluation in the diagnosis of thyroid cancer. Thyroid. 2015;25(2):221-228. doi: https://doi.org/10.1089/thy.2014.0338.

8. Seo JY, Kim EK, Kwak JY. Additional BRAF mutation analysis may have additional diagnostic value in thyroid nodules with “suspicious for malignant” cytology alone even when the nodules do not show suspicious US features. Endocrine. 2014;47(1):283-289. doi: https://doi.org/10.1007/s12020-013-0150-5.

9. Koh J, Choi JR, Han KH, et al. Proper indication of BRAF(V600E) mutation testing in fine-needle aspirates of thyroid nodules. PLoS One. 2013;8(5):e64505. doi: https://doi.org/10.1371/journal.pone.0064505.

10. Gandolfi G, Ragazzi M, Frasoldati A, et al. TERT promoter mutations are associated with distant metastases in papillary thyroid carcinoma. Eur J Endocrinol. 2015;172(4):403-413. doi: https://doi.org/10.1530/EJE-14-0837.

11. Liu X, Qu S, Liu R, et al. TERT promoter mutations and their association with BRAF V600E mutation and aggressive clinicopathological characteristics of thyroid cancer. J Clin Endocrinol Metab. 2014;99(6):E1130-1136. doi: https://doi.org/10.1210/jc.2013-4048.

12. Liu T, Yuan X, Xu D. Cancer-Specific Telomerase Reverse Transcriptase (TERT) promoter mutations: biological and clinical implications. Genes (Basel). 2016;7(7). doi: https://doi.org/10.3390/genes7070038.

13. Karunamurthy A, Panebianco F, S JH, et al. Prevalence and phenotypic correlations of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295-301. doi: https://doi.org/10.1530/ERC-16-0043.

14. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184-199. doi: https://doi.org/10.1038/nrc3431.

15. Younis E. Oncogenesis of thyroid cancer. Asian Pac J Cancer Prev. 2017;18(5):1191-1199. doi: https://doi.org/10.22034/APJCP.2017.18.5.1191.

16. Черников Р.А., Павлова И.Е., Воробьев С.Л., и др. Прогностическая ценность BRAFV600E у пациентов с папиллярной карциномой щитовидной железы, 2014 г. // Вестник Санкт-Петербургского университета. Медицина. – 2014. – №2. – С. 146-153. [Chernikov RA, Pavlova IE, Vorobjev SL. Prognostic value of BRAFV600E in papillary thyroid cancer. Vestnik Sankt-Peterburgskogo universiteta. Seriia 11, Meditsina. 2014;(2):146-153. (In Russ.)]

17. Cancer.sanger.ac.uk [Internet]. COSMIC v89, released 15-MAY-19 [cited 2018 Dec 12]. Available from: https://cancer.sanger.ac.uk/cosmic.

18. Ensembl.org [Internet]. Genome browser [cited 2018 Dec 12]. Available from: http://www.ensembl.org/index.html.


Supplementary files

1. Fig. 1. The design of the study design.
Subject
Type Исследовательские инструменты
View (63KB)    
Indexing metadata ▾
2. Fig. 2. The distribution of patients into groups based on the cytological conclusion (n = 75,%) and the distribution of histological findings in the TNF group: UKZ - nodular colloid goiter, PCR - papillary thyroid cancer, TNF - follicular neoplasm, FA - follicular adenoma.
Subject
Type Исследовательские инструменты
View (39KB)    
Indexing metadata ▾
3. Fig. 3. The distribution of patients into groups on the basis of histological findings (n = 75,%): UKZ - nodular colloid goiter, PCR - papillary thyroid cancer, FA - follicular adenoma.
Subject
Type Исследовательские инструменты
View (23KB)    
Indexing metadata ▾
4. Table 1_characteristics of patients included in the study
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
5. Table 2 frequency of mutations in BRAF
Subject
Type Исследовательские инструменты
Download (92KB)    
Indexing metadata ▾
6. Table 3_ Frequency of mutations in NRAS
Subject
Type Исследовательские инструменты
Download (46KB)    
Indexing metadata ▾
7. 1
Subject
Type Исследовательские инструменты
View (44KB)    
Indexing metadata ▾
8. 2
Subject
Type Исследовательские инструменты
View (50KB)    
Indexing metadata ▾
9. 3
Subject
Type Исследовательские инструменты
View (50KB)    
Indexing metadata ▾
10. 4
Subject
Type Исследовательские инструменты
View (40KB)    
Indexing metadata ▾
11. 1
Subject
Type Исследовательские инструменты
View (51KB)    
Indexing metadata ▾
12. 2
Subject
Type Исследовательские инструменты
View (57KB)    
Indexing metadata ▾
13. 3
Subject
Type Исследовательские инструменты
View (51KB)    
Indexing metadata ▾

Review

For citations:


Kachko V.A., Zaretsky A.R., Vanushko V.E., Platonova N.M., Abrosimov A.Yu., Semkina G.V. Somatic mutation testing: the role in differential diagnosis of thyroid neoplasms. Endocrine Surgery. 2019;13(1):26-41. (In Russ.) https://doi.org/10.14341/serg10181

Views: 2121


ISSN 2306-3513 (Print)
ISSN 2310-3965 (Online)