Preview

Эндокринная хирургия

Расширенный поиск

Микробиота как фактор, влияющий на изменение вкусовых предпочтений после бариатрической операции

https://doi.org/10.14341/serg12755

Полный текст:

Аннотация

В настоящее время для достижения ремиссии сахарного диабета, связанного с ожирением, все чаще применяются хирургические методы лечения: лапароскопическое гастрошунтирование, продольная резекция желудка и другие. В клинической практике после данного вида оперативных вмешательств у пациентов часто наблюдаются изменения вкусовых привычек и нарушения толерантности к продуктам — тошнота, рвота, непереносимость запаха, вида и текстуры пищи. В представленном обзоре обобщены данные исследований о факторах, влияющих на изменение микробиоты кишечника и слюны, о воздействии состава микробиоты на развитие ожирения, об изменении вкусовых привычек у пациентов после бариатрических операций и возможных причинах изменений. Для поиска источников использовались интернет-ресурсы PubMed, Google Scholar, eLIBRARY.ru за последние 10 лет, для доступа к полному тексту статей — сайты издательств Springer, Elsevier и другие. По результатам поиска проанализирован 101 источник, 60 из них включены в данный обзор.

 

Об авторах

Ф. Х. Дзгоева
Национальный медицинский исследовательский центр эндокринологии
Россия

Дзгоева Фатима Хаджимуратовна, к.м.н.

Scopus Author ID: 57202120653
eLibrary SPIN: 9315-0722

Москва



Н. В. Силина
Национальный медицинский исследовательский центр эндокринологии
Россия

Силина Наталья Валерьевна

ул. Дмитрия Ульянова, д. 11, 117036 Москва



Список литературы

1. World Health Organization [Internet]. The challenge of obesity - quick statistics 2016 [cited 01.02.23]. Available from: https://www.who.int/ru/news-room/fact-sheets/detail/obesity-and-overweight

2. Di Cesare M, Bentham J, Stevens GA, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377-1396. doi: https://doi.org/10.1016/S0140-6736(16)30054-X

3. Kelly T, Yang W, Chen C-S, et al. Global burden of obesity in 2005 and projections to 2030. Int J Obes. 2008;32(9):1431-1437. doi: https://doi.org/10.1038/ijo.2008.102

4. Han Y, Kim G, Ahn E, et al. Integrated metagenomics and metabolomics analysis illustrates the systemic impact of the gut microbiota on host metabolism after bariatric surgery. Diabetes, Obes Metab. 2022;24(7):1224-1234. doi: https://doi.org/10.1111/dom.14689

5. Sarwer DB, Wadden TA, Moore RH, et al. Preoperative eating behavior, postoperative dietary adherence, and weight loss after gastric bypass surgery. Surg Obes Relat Dis. 2008;4(5):640-646. doi: https://doi.org/10.1016/j.soard.2008.04.013

6. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013;11(9):639-647. doi: https://doi.org/10.1038/nrmicro3089

7. Leung R, Covasa M. Do gut microbes taste? Nutrients. 2021;13(8):2581. doi: https://doi.org/10.3390/nu13082581

8. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027-1031. doi: https://doi.org/10.1038/nature05414

9. Ren Z, Wang H, Cui G, et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut. 2021;70(7):1253-1265. doi: https://doi.org/10.1136/gutjnl-2020-323826

10. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701-712. doi: https://doi.org/10.1038/nrn3346

11. Fetissov SO. Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nat Rev Endocrinol. 2017;13(1):11-25. doi: https://doi.org/10.1038/nrendo.2016.150

12. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546. doi: https://doi.org/10.1038/nature12506

13. Takai S, Yasumatsu K, Inoue M, et al. Glucagon-like peptide-1 is specifically involved in sweet taste transmission. FASEB J. 2015;29(6):2268-2280. doi: https://doi.org/10.1096/fj.14-265355

14. Vascellari S, Melis M, Cossu G, et al. Genetic variants of TAS2R38 bitter taste receptor associate with distinct gut microbiota traits in Parkinson’s disease: A pilot study. Int J Biol Macromol. 2020;(165):665-674. doi: https://doi.org/10.1016/j.ijbiomac.2020.09.056

15. Khera S, Saigal A. Assessment and evaluation of gustatory functions in patients with diabetes mellitus Type II: A study. Indian J Endocrinol Metab. 2018;22(2):204. doi: https://doi.org/10.4103/ijem.IJEM_555_17

16. Besnard P, Christensen JE, Bernard A, et al. Identification of an oral microbiota signature associated with an impaired orosensory perception of lipids in insulinresistant patients. Acta Diabetol. 2020;57(12):1445-1451. doi: https://doi.org/10.1007/s00592-020-01567-9

17. Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 2015;21(3):369-378. doi: https://doi.org/10.1016/j.cmet.2015.01.001

18. Li JV, Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60(9):1214-1223. doi: https://doi.org/10.1136/gut.2010.234708

19. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce longterm changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228-238. doi: https://doi.org/10.1016/j.cmet.2015.07.009

20. Zhang H, DiBaise JK, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci. 2009;106(7):2365-2370. doi: https://doi.org/10.1073/pnas.0812600106

21. Rios-Covian D, González S, Nogacka AM, et al. An Overview on Fecal Branched Short-Chain Fatty Acids Along Human Life and as Related With Body Mass Index: Associated Dietary and Anthropometric Factors. Front Microbiol. 2020;11(7):2365-2370. doi: https://doi.org/10.3389/fmicb.2020.00973

22. Gralka E, Luchinat C, Tenori L, et al. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a proceduredependent manner. Am J Clin Nutr. 2015;102(6):1313-1322. doi: https://doi.org/10.3945/ajcn.115.110536

23. Wijayatunga NN, Sams VG, Dawson JA, et al. Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab Res Rev. 2018;34(8):e3045. doi: https://doi.org/10.1002/dmrr.3045

24. Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120. doi: https://doi.org/10.1186/s12866-017-1027-1

25. Aron-Wisnewsky J, Prifti E, Belda E, et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut. 2019;68(1):70-82. doi: https://doi.org/10.1136/gutjnl-2018-316103

26. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480-484. doi: https://doi.org/10.1038/nature07540

27. Davies NK, O’Sullivan JM, Plank LD, Murphy R. Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review. Surg Obes Relat Dis. 2019;15(4):656-665. doi: https://doi.org/10.1016/j.soard.2019.01.033

28. Murphy R, Tsai P, Jüllig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917-925. doi: https://doi.org/10.1007/s11695-016-2399-2

29. Shen N, Caixàs A, Ahlers M, et al. Longitudinal changes of microbiome composition and microbial metabolomics after surgical weight loss in individuals with obesity. Surg Obes Relat Dis. 2019;15(8):1367-1373. doi: https://doi.org/10.1016/j.soard.2019.05.038

30. Alcock J, Maley CC, Aktipis CA. Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays. 2014;36(10):940-949. doi: https://doi.org/10.1002/bies.201400071

31. Besnard P, Christensen JE, Brignot H, et al. Obese subjects with specific gustatory papillae microbiota and salivary cues display an impairment to sense lipids. Sci Rep. 2018;8(1):6742. doi: https://doi.org/10.1038/s41598-018-24619-1

32. Feng Y, Licandro H, Martin C, et al. The associations between biochemical and microbiological variables and taste differ in whole saliva and in the film lining the Tongue. Biomed Res Int. 2018;1-10. doi: https://doi.org/10.1155/2018/2838052

33. Takahashi N. Oral microbiome metabolism: from “who are they?” to “what are they doing?” J Dent Res. 2015;94(12):1628-1637. doi: https://doi.org/10.1177/0022034515606045

34. Wu Y, Chi X, Zhang Q, et al. Characterization of the salivary microbiome in people with obesity. PeerJ. 2018;6(12):e4458. doi: https://doi.org/10.7717/peerj.4458.

35. Zeigler CC, Persson GR, Wondimu B, et al. Microbiota in the Oral Subgingival Biofilm Is Associated With Obesity in Adolescence. Obesity. 2012;20(1):157-164. doi: https://doi.org/10.1038/oby.2011.305

36. Самойлова Ю.Г., Олейник О.А., Кудлай Д.А., и др. Патогенетическая взаимосвязь микробиоты ротовой полости и ожирения у детей и подростков // Российский вестник перинатологии и педиатрии. — 2021. — Т. 66. — №5. — С. 38-41. doi: https://doi.org/10.21508/1027-4065-2021-66-5-38-41

37. Wickremesekera K, Miller G, Naotunne TD, et al. Loss of Insulin Resistance after Roux-en-Y Gastric Bypass Surgery: a Time Course Study. Obes Surg. 2005;15(4):474-481. doi: https://doi.org/10.1381/0960892053723402

38. Li J V., Ashrafian H, Bueter M, et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011;60(9):1214-1223. doi: https://doi.org/10.1136/gut.2010.234708

39. Shillitoe E, Weinstock R, Kim T, et al. The oral microflora in obesity and type-2 diabetes. J Oral Microbiol. 2012;4(1):19013. doi: https://doi.org/10.3402/jom.v4i0.19013

40. Džunková M, Lipták R, Vlková B, et al. Salivary microbiome composition changes after bariatric surgery. Sci Rep. 2020;10(1):20086. doi: https://doi.org/10.1038/s41598-020-76991-6

41. Вавилова Т.П., Янушевич О.О., Островская И.Г. Слюна. Аналитические возможности и перспективы. — М.: БИНОМ; 2014. — 312 с.

42. Cui Y, Yang M, Zhu J, et al. Developments in diagnostic applications of saliva in human organ diseases. Med Nov Technol Devices. 2022;13(1):100115. doi: https://doi.org/10.1016/j.medntd.2022.100115

43. Cui Y, Zhang H, Zhu J, et al. Unstimulated Parotid Saliva Is a Better Method for Blood Glucose Prediction. Appl Sci. 2021;11(23):11367. doi: https://doi.org/10.3390/app112311367

44. Ahmed K, Penney N, Darzi A, Purkayastha S. Taste changes after bariatric surgery: a systematic review. Obes Surg. 2018;28(10):3321-3332. doi: https://doi.org/10.1007/s11695-018-3420-8

45. Burge JC, Schaumburg JZ, Choban PS, et al. Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95(6):666-670. doi: https://doi.org/10.1016/S0002-8223(95)00182-4

46. Graham L, Murty G, Bowrey DJ. Taste, smell and appetite change after Roux-en-Y gastric bypass surgery. Obes Surg. 2014;24(9):1463-1468. doi: https://doi.org/10.1007/s11695-014-1221-2

47. Nielsen MS, Andersen INSK, Lange B, et al. Bariatric surgery leads to short-term effects on sweet taste sensitivity and hedonic evaluation of fatty food stimuli. Obesity. 2019;27(11):1796-1804. doi: https://doi.org/10.1002/oby.22589

48. Holinski F, Menenakos C, Haber G, et al. Olfactory and gustatory function after bariatric surgery. Obes Surg. 2015;25(12):2314-2320. doi: https://doi.org/10.1007/s11695-015-1683-x

49. Ekmekcioglu C, Maedge J, Lam L, et al. Salt taste after bariatric surgery and weight loss in obese persons. PeerJ. 2016;(4):e2086. doi: https://doi.org/10.7717/peerj.2086

50. Nance K, Eagon J, Klein S, Pepino M. Effects of sleeve gastrectomy vs. roux-en-y gastric bypass on eating behavior and sweet taste perception in subjects with obesity. Nutrients. 2017;10(1):18. doi: https://doi.org/10.3390/nu10010018

51. Abdeen GN, Miras AD, Alqahtani AR, le Roux CW. Vertical sleeve gastrectomy in adolescents reduces the appetitive reward value of a sweet and fatty reinforcer in a progressive ratio task. Surg Obes Relat Dis. 2019;15(2):194-199. doi: https://doi.org/10.1016/j.soard.2018.10.033

52. Miras AD, Jackson RN, Jackson SN, et al. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am J Clin Nutr. 2012;96(3):467-473. doi: https://doi.org/10.3945/ajcn.112.036921

53. Ribeiro G, Camacho M, Fernandes AB, et al. Reward-related gustatory and psychometric predictors of weight loss following bariatric surgery: a multicenter cohort study. Am J Clin Nutr. 2021;113(3):751-761. doi: https://doi.org/10.1093/ajcn/nqaa349

54. Scholtz S, Miras AD, Chhina N, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891-902. doi: https://doi.org/10.1136/gutjnl-2013-305008

55. Goldstone AP, Miras AD, Scholtz S, et al. Link between increased satiety gut hormones and reduced food reward after gastric bypass surgery for obesity. J Clin Endocrinol Metab. 2016;101(2):599-609. doi: https://doi.org/10.1210/jc.2015-2665

56. Molin Netto BD, Earthman CP, Farias G, et al. Eating patterns and food choice as determinant of weight loss and improvement of metabolic profile after RYGB. Nutrition. 2017;(33):125-131. doi: https://doi.org/10.1016/j.nut.2016.05.007

57. Schiavo L, Aliberti SM, Calabrese P, et al. Changes in food choice, taste, desire, and enjoyment 1 year after sleeve gastrectomy: A prospective study. Nutrients. 2022;14(10):2060. doi: https://doi.org/10.3390/nu14102060

58. Sanmiguel CP, Jacobs J, Gupta A, et al. Surgically induced changes in gut microbiome and hedonic eating as related to weight loss: Preliminary findings in obese women undergoing bariatric surgery. Psychosom Med. 2017;79(8):880-887. doi: https://doi.org/10.1097/PSY.0000000000000494

59. Dong TS, Gupta A, Jacobs JP, et al. Improvement in uncontrolled eating behavior after laparoscopic sleeve gastrectomy is associated with alterations in the brain–gut– microbiome axis in obese women. Nutrients. 2020;12(10):2924. doi: https://doi.org/10.3390/nu12102924

60. Ilhan ZE, DiBaise JK, Isern NG, et al. Distinctive microbiomes and metabolites linked with weight loss after gastric bypass, but not gastric banding. ISME J. 2017;11(9):2047-2058. doi: https://doi.org/10.1038/ismej.2017.71


Дополнительные файлы

1. Рис. 1. Различные методы сбора слюны (адаптация схемы Y. Cui и соавт. [43]).
Тема
Тип Исследовательские инструменты
Посмотреть (368KB)    
Метаданные
2. Рис. 2. Схематическое изображение изменений в органах чувств в ответ на вкус и запах после бариатрических процедур (адаптация схемы K. Ahmed и соавт. [44]. Создано на BioRender.com).
Тема
Тип Исследовательские инструменты
Посмотреть (407KB)    
Метаданные

Рецензия

Для цитирования:


Дзгоева Ф.Х., Силина Н.В. Микробиота как фактор, влияющий на изменение вкусовых предпочтений после бариатрической операции. Эндокринная хирургия. 2022;16(1):13-22. https://doi.org/10.14341/serg12755

For citation:


Dzgoeva F.K., Silina N.V. Microbiota as a factor influencing the change in taste preferences after bariatric surgery. Endocrine Surgery. 2022;16(1):13-22. (In Russ.) https://doi.org/10.14341/serg12755

Просмотров: 313


ISSN 2306-3513 (Print)
ISSN 2310-3965 (Online)